Step of Proof: order_functionality_wrt_iff
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
order
functionality
wrt
iff
:
1.
T
: Type
2.
R
:
T
T
3.
R'
:
T
T
4.
x
,
y
:
T
.
R
(
x
,
y
)
R'
(
x
,
y
)
(Refl(
T
;
x
,
y
.
R
(
x
,
y
)) & Trans(
T
;
x
,
y
.
R
(
x
,
y
)) & AntiSym(
T
;
x
,
y
.
R
(
x
,
y
)))
(Refl(
T
;
x
,
y
.
R'
(
x
,
y
)) & Trans(
T
;
x
,
y
.
R'
(
x
,
y
)) & AntiSym(
T
;
x
,
y
.
R'
(
x
,
y
)))
latex
by
InteriorProof
((RWH (HypC 4) 0)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n
CollapseTHENA ((Au
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
(Refl(
T
;
x
,
y
.
R'
(
x
,
y
)) & Trans(
T
;
x
,
y
.
R'
(
x
,
y
)) & AntiSym(
T
;
x
,
y
.
R'
(
x
,
y
)))
C1:
(Refl(
T
;
x
,
y
.
R'
(
x
,
y
)) & Trans(
T
;
x
,
y
.
R'
(
x
,
y
)) & AntiSym(
T
;
x
,
y
.
R'
(
x
,
y
)))
C
.
Definitions
P
Q
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
x
,
y
.
t
(
x
;
y
)
,
P
&
Q
,
t
T
,
x
(
s1
,
s2
)
,
Lemmas
anti
sym
functionality
wrt
iff
,
trans
functionality
wrt
iff
,
refl
functionality
wrt
iff
,
and
functionality
wrt
iff
,
iff
functionality
wrt
iff
,
anti
sym
wf
,
trans
wf
,
refl
wf
origin